Метод гармонической линеаризации. Гармоническая линеаризация при отсутствии постоянной составляющей на входе

  • Дата: 22.07.2023

Министерство образования и науки Российской Федерации

Саратовский государственный технический университет

Балаковский институт техники, технологии и управления

Метод гармонической линеаризации

Методические указания к лабораторной работе по курсу «Теория автоматического управления» для студентов специальности 210100

Одобрено

редакционно –издательским советом

Балаковского интститута техники,

технологии и управления

Балаково 2004

Цель работы: Изучение нелинейных систем с помощью метода гармонической линеаризации (гармонического баланса), определение коэффициентов гармонической линеаризации для различных нелинейных звеньев. Получение навыков по нахождению параметров симметричных колебаний постоянной амплитуды и частоты (автоколебаний), используя алгебраический, частотный способы, а также с помощью критерия Михайлова.

ОСНОВНЫЕ СВЕДЕНИЯ

Метод гармонической линеаризации относится к приближенным методам исследования нелинейных систем. Он позволяет достаточно просто и с приемлемой точностью оценивать устойчивость нелинейных систем, определять частоту и амплитуду установившихся в системе колебаний.

Предполагается, что исследуемая нелинейная САУ может быть представлена в следующем виде

причем нелинейная часть должна иметь одну нелинейность

. (1)

Эта нелинейность может быть как непрерывной, так и релейной, однозначной или гистерезисной.

Любую функцию или сигнал можно разложить в ряд по системе линейно-независимых, в частном случае ортонормированных функций. В качестве такого ортогонального ряда может быть использован ряд Фурье.

Разложим в ряд Фурье выходной сигнал нелинейной части системы

, (2)

здесь - коэффициенты Фурье,

,

,

. (3)

Таким образом, сигнал согласно (2) может быть представлен в виде бесконечной суммы гармоник с возрастающими частотами и т. д. Этот сигнал поступает на вход линейной части нелинейной системы.

Обозначим передаточную функцию линейной части

, (4)

причем степень полинома числителя должна быть меньше степени полинома знаменателя. В этом случае АЧХ линейной части имеет вид

где 1 - не имеет полюсов, 2 - имеет полюс или полюса.

Для АЧХ справедливо записать

Таким образом, линейная часть нелинейной системы является фильтром высоких частот. В этом случае линейная часть будет пропускать без ослабления только низкие частоты, высокие же по мере роста частоты будут существенно ослабляться.

В методе гармонической линеаризации делается предположение о том, что линейная часть системы будет пропускать только постоянную составляющую сигнала и первую гармонику. Тогда сигнал на выходе линейной части будет иметь вид

Этот сигнал проходит по всему замкнутому контуру системы Рис.1 и на выходе нелинейного элемента без учета более высоких гармоник, согласно (2) имеем

. (7)

При исследовании нелинейных систем с помощью метода гармонической линеаризации возможны случаи симметричных и несимметричных колебаний. Рассмотрим случай симметричных колебаний. Здесь и.

Введем следующие обозначения

,

.

Подставив их в (7), получим . (8)

С учетом того, что

,

, где ,

. (9)

Согласно (3) и (8) при

,

. (10)

Выражение (9) является гармонической линеаризацией нелинейности устанавливает линейную связь входной переменной и выходной при . Величины и называются коэффициентами гармонической линеаризации.

Необходимо отметить, что уравнение (9) является линейным для конкретных величин и (амплитуды и частоты гармонических колебаний в системе). Но в целом оно сохраняет нелинейные свойства, так как коэффициенты различны для различных и . Эта особенность и позволяет исследовать с помощью метода гармонической линеаризации свойства нелинейных систем [ Попов Е.П.].

В случае несимметричных колебаний гармоническая линеаризация нелинейности приводит к линейному уравнению

,

,

. (12)

Так же как и уравнение (9), линеаризованное уравнение (11) сохраняет свойства нелинейного элемента, так как коэффициенты гармонической линеаризации , , а так же постоянная составляющая зависят и от смещения и от амплитуды гармонических колебаний .

Уравнения (9) и (11) позволяют получить передаточные функции гармонически линеаризованных нелинейных элементов. Так для симметричных колебаний

Метод гармонической линеаризации (гармонического баланса ) позволяет определить условия существования и параметры возможных автоколебаний в нелинейных САУ. Автоколебания определяются предельными циклами в фазовом пространстве систем. Предельные циклы разделяют пространство (в общем случае - многомерное ) на области затухающих и расходящихся процессов. В результате расчета параметров автоколебаний можно сделать заключение о их допустимости для данной системы или о необходимости изменения параметров системы.

Метод позволяет:

Определить условия устойчивости нелинейной системы;

Найти частоту и амплитуду свободных колебаний системы;

Синтезировать корректирующие цепи, для обеспечения требуемых параметров автоколебаний;

Исследовать вынужденные колебания и оценивать качество переходных процессов в нелинейных САУ.

Условия применимости метода гармонической линеаризации.

1) При использовании метода предполагается, что линейная часть системы устойчива или нейтральна.

2) Сигнал на входе нелинейного звена близок по форме к гармоническому сигналу. Это положение требует пояснений.

На рис.1 представлены структурные схемы нелинейной САУ. Схема состоит из последовательно соединенных звеньев: нелинейного звена y=F(x) и линейно-

го, которое описывается дифференциальным уравнением

При y = F(g - x) = g - x получим уравнение движения линейной системы.

Рассмотрим свободное движение, т.е. при g(t) º 0. Тогда,

В случае, когда в системе существуют автоколебания, свободное движение системы является периодическим. Непериодическое движение с течением времени оканчивается остановкой системы к некотором конечном положении (обычно, на специально предусмотренном ограничителе).

При любой форме периодического сигнала на входе нелинейного элемента сигнал на его выходе будет содержать кроме основной частоты высшие гармоники. Предположение о том, что сигнал на входе нелинейной части системы можно считать гармоническим, т.е., что

x(t)@ a×sin(wt),

где w=1/T, T - период свободных колебаний системы, равносильно предположению о том, что линейная часть системы эффективно фильтрует высшие гармоники сигнала y(t) = F(x (t)).

В общем случае при действии на входе нелинейного элемента гармонического сигнала x(t) сигнал на выходе может быть преобразован по Фурье:

Коэффициенты ряда Фурье

Для упрощения выкладок положим C 0 =0, т.е., что функция F(x) симметрична относительно начала координат. Такое ограничение не обязательно и сделано анализа. Появление коэффициентов C k ¹ 0 означает, что, в общем случае нелинейное преобразование сигнала сопровождается и фазовыми сдвигами преобразуемого сигнала. В частности, это имеет место в нелинейностях с неоднозначными характеристиками (с различного рода гистерезисными петлями), причем как запаздывание так и, в некоторых случаях, опережение по фазе .



Предположение об эффективной фильтрации означает, что амплитуды высших гармоник на выходе линейной части системы малы, то есть

Выполнению этого условия способствует то, что во многих случаях амплитуды гармоник уже непосредственно на выходе нелинейности оказываются существенно меньше амплитуды первой гармоники. Например, на выходе идеального реле при гармоническом сигнале на входе

y(t)=F(с×sin(wt))=a×sign(sin(wt))

четные гармоники отсутствуют, а амплитуда третьей гармоники в три раза меньше амплитуды первой гармоники

Сделаем оценку степени подавления высших гармоник сигнала в линейной части САУ. Для этого сделаем ряд предположений.

1) Частота свободных колебаний САУ приблизительно равна частоте среза ее линейной части. Отметим, что частота свободных колебаний нелинейной САУ может существенно отличаться от частоты свободных колебаний линейной системы так, что это допущение не всегда корректно .

2) Показатель колебательности САУ примем равным M=1.1.

3) ЛАХ в окрестностях частоты среза (w с) имеет наклон -20 дБ/дек. Границы этого участка ЛАХ связаны с показателем колебательности соотношениями

4) Частота w max является сопрягающей с участком ЛФХ, так что при w > w max наклон ЛАХ не менее минус 40 дБ/дек.

5) Нелинейность - идеальное реле с характеристикой y = sign(x) так, что на ее выходе нелинейности будут присутствовать только нечетные гармоники.

Частоты третьей гармоники w 3 = 3w c , пятой w 5 = 5w с,

lgw 3 = 0.48+lgw c ,

lgw 5 = 0.7+lgw c .

Частота w max = 1.91w с, lgw max = 0.28+lgw c . Сопрягающая частота отстоит от частоты среза на 0.28 декады.

Уменьшение амплитуд высших гармоник сигнала при их прохождении через линейную часть системы составит для третьей гармоники

L 3 = -0.28×20-(0.48-0.28)×40 = -13.6 дБ, то есть в 4.8 раза,

для пятой - L 5 = -0.28×20-(0.7-0.28)×40 = -22.4 дБ, то есть в 13 раз.

Следовательно, сигнал на выходе линейной части окажется близким к гармоническому

Это эквивалентно предположению, что система является низкочастотным фильтром.

Гармоническая линеаризация нелинейных элементов. Этот метод используется для исследования нелинейных систем с линейной частью выше третьего порядка. В большинстве систем переходной процесс представляет собой затухающие колебания, поэтому на входе нелинейного элемента по главной обратной связи (ГОС) передаётся периодический сигнал с медленно меняющейся амплитудой и при наличии входного сигнала вместе с постоянной составляющей.

Будем считать, что на входе нелинейного элемента за некоторый малый начальный промежуток времени амплитуда и частота не измены или они соответствуют амплитуде и частоте автоколебаний системы. На выходе НЭ получим периодическую функцию, которую можно разложить в ряд Фурье. При исследовании нелинейных систем чаще всего используют только первую гармоническую составляющую, т.к. в большинстве случаев линейная часть системы является фильтром низких частот. Но для того что бы проверить это и возможности применимости этого метода исследований необходимо определить частоту автоколебаний в системе, по которой в дальнейшем определить способность линейной части отфильтровывать высшие гармоники. Для этого строят АЧХ линейной части (ЛЧ).

Пусть ЛЧ системы является фильтром НЧ, и будем считать, что колебания на входе нелинейного элемента НЭ синусоидальные, тогда выходным сигналом НЭ:

где А к и В к – коэффициенты разложения Фурье нелинейной функции:

Если нелинейная характеристика симметрична и нейтральна, то коэффициент разложения ряда Фурье В к =0 и в разложении отсутствуют чётные гармоники:

Используя эти соотношения, выразим значение синуса и косинуса через входной сигнал

Подставим эти соотношения в уравнение для выхода НЭ и учтём только первую гармонику.

Запишем это уравнение в операторной форме:

Коэффициент А 0 – амплитуда автоколебаний; q – коэффициент гармонической линеаризации по синусоидальной составляющей, он зависит от амплитуды сигнала на входе НЭ; b 1 – коэффициент гармонической линеаризации по косинусоидальной составляющей; ω 0 – амплитуда автоколебаний.

При отсутствии постоянной составляющей на входе НЭ мы получим уравнение описания поведения НЭ:

Это уравнение гармонической линеаризации НЭ.

Гармонически линеаризованный НЭ можно представить в виде:

В этом случае мы можем вывести передаточную функцию для НЭ:

при отсутствии постоянной составляющей на входе.

Коэффициент А 0 – амплитуда автоколебаний;

q – коэффициент гармонической линеаризации по синусоидальной составляющей, он зависит от амплитуды сигнала на входе НЭ;

b 1 – коэффициент гармонической линеаризации по косинусоидальной составляющей;


ω 0 – амплитуда автоколебаний.

На линейную часть системы действует выходной сигнал с НЭ, который содержит весь спектр частот разложения Фурье. В силу принципа суперпозиции можно считать, что каждая гармоника действует на линейную часть независимо от другой. Поэтому на выходе системы могут устанавливаться периодические колебания, которые будут содержать весь спектр частот, соответствующих сигналу НЭ, но амплитуда каждой гармоники будет определяться коэффициентом преобразования правой части по рассмотренной гармонике ().

Подставив АЧХ линейной части можно установить соотношение изменения амплитуд для каждой гармоники и проверить, является ли линейная часть ФНЧ (можно ли отбросить высшие гармоники).

Если установлена частота автоколебаний и известны коэффициенты гармонической линеаризации НЭ, учитывающие только первую гармонику, то частота (частоте первой гармоники). Если то можно отбросить высшие гармоники и этот метод подходит. Т.е. можно ограничиться расчетом только одной гармоники на выходе НЭ. Тогда для однозначной нечётной характеристики НЭ будет иметь:

Для гистерезисной нечётной характеристики:

В первом случае НЭ эквивалентен безинерционному звену с некоторыми особенностями – коэффициент пропорциональности зависит от амплитуды или частоты сигнала на входе НЭ.

В случае с гистерезисной нелинейности звено эквивалентно форсирующему звену. Особенность этого способа линеаризации позволяет использовать для анализа нелинейной системы частотные методы линейной теории.

Введение

Релейные системы получили широкое распространение в практике автоматического регулирования. Достоинством релейных систем является простота конструкции, надежность, простота обслуживания и настройки. Релейные системы представляют собой особый класс нелинейных АСР.

В отличие от непрерывных в релейных системах регулирующее воздействие изменяется скачкообразно всякий раз, когда управляющий сигнал реле (чаще всего это ошибка регулирования) проходит через некоторые фиксированные (пороговые) значения, например, через нуль.

Релейные системы, как правило, обладают высоким быстродействием вследствие того, что управляющее воздействие в них изменяется практически мгновенно, а на исполнительное устройство действует кусочно-постоянный сигнал максимальной амплитуды. В то же время в релейных системах часто возникают автоколебания, что во многих случаях является недостатком. В настоящей работе исследуется релейная система с четырьмя различными законами управления.

Структура исследуемой системы

Исследуемая система (рис.) 1, включает в себя элемент сравнения ЭС, релейный элемент РЭ, исполнительный двигатель (идеальный интегратор с коэффициентом усиления =1), объект регулирования (апериодическое звено с тремя постоянными времени , , и коэффициентом усиления ). Значения параметров системы приведены в табл. 1 приложения А.

Статические характеристики (характеристики вход-выход) исследуемых релейных элементов приведены на рис. 2.

На рис. 2,а приведена характеристика идеального двухпозиционного реле, на рис. 2,б характеристика трехпозиционного реле с зоной нечувствительности. На рис. 2,в и 2,г приведены характеристики двухпозиционного реле с положительным и отрицательным гистерезисом соответственно.

Исследуемая АСР может быть смоделирована с помощью известных пакетов моделирования, например, SIAM или VisSim.

Замечание. В некоторых пакетах моделирования значение выходного

сигнала реле может принимать лишь значения ±1 вместо ±В, где В произвольное число. В таких случаях необходимо коэффициент усиления интегратора принять равным .


Порядок выполнения работы

Для выполнения работы каждый студент получает от преподавателя вариант исходных данных (см. раздел 2).



Работа выполняется в два этапа.

Первый этап – расчетно-исследовательский (может быть выполнен вне лаборатории).

Второй этап – экспериментальный (проводится в лаборатории). На этом этапе с помощью одного из пакетов производится моделирование переходных процессов в исследуемой системе для режимов, рассчитанных на первом этапе, и осуществляется проверка точности теоретических методов.

Необходимый теоретический материал изложен в разделе 4; в разделе 5 приведены контрольные вопросы.

3.1. Расчетно – исследовательская часть

1. Получить выражения для амплитудно-частотной и фазо-частотной, вещественной и мнимой характеристик линейной части системы.

2. Рассчитать и построить амплитудно-фазовую характеристику линейной части системы. Для расчета использовать программы из пакета ТАУ. Обязательно распечатать значения вещественной и мнимой частотной характеристик (10 – 15 точек, соответствующих третьему и второму квадрантам).

4. Используя графоаналитический метод Гольдфарба, определить амплитуду и частоту автоколебаний и их устойчивость для всех четырех реле. Расчет параметров автоколебаний можно осуществить и аналитически. Качественно изобразить фазовый портрет системы для каждого из случаев.



5. Для трехпозиционного реле определить одно значение коэффициента усиления линейной части, при котором автоколебания отсутствуют, и граничное значение, при котором происходит срыв автоколебаний.

Экспериментальная часть

1. Используя один из доступных пакетов моделирования, собрать схему моделирования исследуемой АСР. По разрешению преподавателя можно воспользоваться готовой схемой. Настроить параметры схемы в соответствии с заданием.

2. Исследовать переходный процесс в системе с идеальным реле (вывести на печать), подавая на вход скачкообразное воздействие x(t)=40*1(t). Измерить амплитуду и частоту автоколебаний, сравнив их с расчетными значениями. Повторить эксперимент, установив не нулевые начальные условия (например, у(0)=10, у (1) (0)=-5).

3. Исследовать переходный процесс в системе с трехпозиционным реле для двух различных значений амплитуды входного сигнала x(t)= 40*1(t) и x(t)=15*1(t). Вывести на печать переходные процессы, измерить амплитуду и частоту автоколебаний (если они существуют), сравнить их с расчетными значениями, сделать выводы.

4. Исследовать переходные процессы в системе с трехпозиционным реле для других значений коэффициента усиления линейной части (см. п.5, раздел 3.1).

5. Исследовать переходные процессы в системе с двухпозиционными реле с гистерезисом при нулевых и не нулевых начальных условиях и x(t)=40*1(t). Вывести на печать переходные процессы, измерить амплитуду и частоту автоколебаний (если они существуют), сравнить их с расчетными значениями, сделать выводы.

Теоретическая часть

Широко распространенным методом расчета нелинейных систем является метод гармонической линеаризации (описывающих функций) .

Метод позволяет определять параметры автоколебаний (амплитуду и частоту), устойчивость автоколебаний, устойчивость положения равновесия нелинейной АСР. На базе метода гармонической линеаризации разработаны методы построения переходных процессов, анализа и синтеза нелинейных АСР .

Метод гармонической линеаризации

Как уже отмечалось, в нелинейных и в особенности релейных АСР часто наблюдаются устойчивые периодические колебания постоянной амплитуды и частоты, так называемые автоколебания . Причем автоколебания могут сохраняться даже при значительных изменениях параметров системы. Практика показала, что во многих случаях колебания регулируемой величины (рис. 3) близки к гармоническим.


Близость автоколебаний к гармоническим позволяет использовать для определения их параметров – амплитуды A и частоты w 0 – метод гармонической линеаризации. В основе метода лежит предположение, что линейная часть системы является фильтром низких частот (гипотеза фильтра). Определим условия, при которых автоколебания в системе могут быть близки к гармоническим. Ограничимся системами, которые как на рис. 3 могут быть приведены к последовательному соединению нелинейного элемента и линейной части. Предположим, что сигнал задания величина постоянная, для простоты примем его равным нулю. А сигнал ошибки (рис 3) является гармоническим:

(1)

Выходной сигнал нелинейного элемента как всякий периодический сигнал – на рисунке 3 это прямоугольные колебания – может быть представлен в виде суммы гармоник ряда Фурье.

Допустим, что линейная часть системы является фильтром низких частот (рис. 4) и пропускает только первую гармонику с частотой w 0 . Вторая с частотой 2w 0 и более высокие гармоники отфильтровываются линейной частью. В этом случае на выходе линейной части будет существовать практически только первая гармоника , а влиянием высших гармоник можно пренебречь

Таким образом, если линейная часть системы является фильтром низких частот, а частота автоколебаний w 0 удовлетворяет условиям

, (4)

Предположение, что линейная часть системы является фильтром низких частот, называется гипотезой фильтра . Гипотеза фильтра выполняется всегда, если разность степеней полиномов знаменателя и числителя передаточной функции линейной части

(5)

не меньше двух

Условие (6) выполняется для многих реальных систем. Примером могут служить апериодическое звено второго порядка и реальное интегрирующее

,

. (7)

При исследовании автоколебаний, близких к гармоническим, в расчет принимается только первая гармоника периодических колебаний на выходе нелинейного элемента, поскольку высшие гармоники все равно практически отфильтровываются линейной частью. В режиме автоколебаний осуществляется гармоническая линеаризация нелинейного элемента. Нелинейный элемент заменяется эквивалентным линейным с комплексным коэффициентом усиления (описывающей функцией) , зависящим от амплитуды входного гармонического сигнала:

где и – действительная и мнимая части ,

– аргумент ,

– модуль .

В общем случае зависит как от амплитуды так и частоты автоколебаний и постоянной составляющей . Физически комплексный коэффициент усиления нелинейного элемента , чаще называемый коэффициентом гармонической линеаризации , есть комплексный коэффициент усиления нелинейного элемента по первой гармонике . Модуль коэффициента гармонической линеаризации

(9)

численно равен отношению амплитуды первой гармоники на выходе нелинейного элемента к амплитуде входного гармонического сигнала.

Аргумент

(10)

характеризует сдвиг по фазе между первой гармоникой выходных колебаний и входным гармоническим сигналом. Для однозначных нелинейностей, таких как, например, на рис. 2,а и 2,б, действительное выражение и

Для неоднозначных нелинейностей, рис. 2,в, 2,г, определяется по формуле

где S – площадь петли гистерезиса. Площадь S берется со знаком плюс, если петля гистерезиса обходится в положительном направлении (рис. 2,в) и со знаком минус в противном случае (рис. 2,г).

В общем случае и вычисляются по формулам

,

, (12)

где , – нелинейная функция (характеристика нелинейного элемента).

С учетом вышеизложенного, при исследовании автоколебаний, близких к гармоническим, нелинейная АСР (рис. 3) заменяется эквивалентной с коэффициентом гармонической линеаризации вместо нелинейного элемента (рис. 5). Выходной сигнал нелинейного элемента на рис. 5 обозначен как , это

подчеркивает, что нелинейный элемент генерирует только

первую гармонику колебаний. Формулы для коэффициентов гармонической линеаризации для типовых нелинейностей можно найти в литературе, например, в . В таблице приложения В приведены характеристики исследуемых релейных элементов, формулы для и их годографы. Там же приведены формулы и годографы для обратного коэффициента гармонической линеаризации , определяемого выражением

, (13)

где и действительная и мнимая часть . Годографы и строятся в координатах , и , соответственно.

Запишем теперь условия существования автоколебаний. Система на рис. 5 эквивалентна линейной. В линейной системе существуют незатухающие колебания, если она находится на границе устойчивости. Воспользуемся условием границы устойчивости по критерию Найквиста:

. (14)

Уравнение (14) естьусловие существования автоколебаний, близких к гармоническим. Если существуют действительные положительные решения А и w 0 уравнения (14), то в нелинейной АСР существуют автоколебания близкие к гармоническим. В противном случае автоколебания отсутствуют или не являются гармоническими. Уравнение (14) распадается на два – относительно действительной и мнимой части:

;

;

Поделив обе части уравнения (14) на и принимая во внимание формулу (13), получим условие существования автоколебаний в форме Гольдфарба Л.С.:

. (17)

Уравнение (17) также распадается на два:

,

(18)

и в некоторых случаях ими удобнее пользоваться для определения параметров автоколебаний.

Гольдфарб предложил графоаналитический метод решения системы (17) и определения устойчивости автоколебаний.

В координатах , и , строятся годографы и (рис. 6,а). Если годографы пересекаются, то автоколебания существуют. Параметры автоколебаний – А и w 0 определяются в точках пересечения – частота w 0 по годографу , амплитуда по годографу . На рис. 6,а – две точки пересечения, что указывает на наличие двух предельных циклов.

б)

Для определения устойчивости автоколебаний согласно Гольдфарбу штрихуется левая сторона АФХ линейной части при движении вдоль АФХ в направлении возрастания частоты (рис. 6).

Автоколебания устойчивы, если в точке пересечения годограф нелинейного элемента переходит из незаштрихованной области в заштрихованную при движении в сторону возрастания амплитуды А.

Если переход происходит из заштрихованной области в не- заштрихованную, то автоколебания не устойчивы.

На рис. 6,б качественно изображен фазовый портрет соответствующий двум предельным циклам на рис. 6,а. Точке пересечения с параметрами и на рис. 6,а соответствует не устойчивый предельный цикл на рис. 6,б, точке с параметрами и и добиться срыва автоколебаний , в этом случае годографы и не пересекаются. Этого же эффекта можно добиться, увеличив зону нечувствительности d или уменьшив амплитуду выходного сигнала реле В. Существует некоторое предельное значение К л, при котором АФХ линейной части касается Ошибка! Ошибка связи. при этом , а значение амплитуды равно . Естественно, это приводит к качественному изменению фазового портрета системы.